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ABSTRACT

There is an important need for a consistent analytical foundation supporting the selection
and monitoring of R&ED tasks that support new system concepts that enable future NASA
missions. This capability should be applicable at various degrees of abstraction, depending
upon whether one is interested in formulation, development, or operations. It should also be
applicable to a single project, a program comprised of a group of projects, an enterprise
typically including multiple programs, and the overall agency itself. Emphasis here is on
technology selection and new initiatives, but the same approach can be generalized to other
applications, dealing, for example, with new system architectures, risk reduction, and task
allocation among humans and machines. The purpose of this paper is to describe one such
approach, which is in its early stages of implementation within NASA programs, and to discuss
several illustrative examples. © 2004 Wiley Periodicals, Inc. Syst Eng 7: 285-302, 2004
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1. INTRODUCTION

The current drive toward “One NASA,” a goal that
embodies cross-enterprise Agency Missions and an In-
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tegrated Space Plan, has created an important need for
an overall integrated agency-wide approach to systems
analysis. A central element of such an approach is the
development of a consistent methodological foundation
for selecting and monitoring R&D tasks that support
new system concepts to enable or enhance future mis-
sions.

This capability should be applicable at various de-
grees of abstraction, depending upon whether one is
interested in formulation, development, or operations.
It should also be applicable to a single project, a pro-
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gram comprised of a group of projects, an enterprise
typically including multiple programs, and NASA it-
self.

START (STrategic Assessment of Risk and Technol-
ogy) offers one approach [Chase et al., 2003; Dolgin
and Weisbin, 2003; Elfes et al., 2003; Lincoln et al.,
2003; Smith, Wertz, and Weisbin, 2003a: 101; Smith,
Wertz, and Weisbin, 2003b; Smith, Dolgin, and Weis-
bin, 2003; Neff et al., 2004] that is in its early stages
toward achieving this capability. Developed within the
Strategic Systems Technology Program Office, a divi-
sion of the Office of the Chief Technologist at Jet
Propulsion Laboratory, START offers systems for
quantifying the features of each development candi-
date, assessing its risk, and calculating its probable
return-on-investment. The approach is currently under
further development and evaluation at various program-
matic and institutional organization levels within
NASA.

Emphasis here is on technology selection and analy-
sis of technological options that are in their early stages
of development, but a similar approach is envisioned to
deal with such other issues of selection of new system
architectures and risk reduction during system integra-
tion during the entire life cycle of a mission design
process.

2. METHODOLOGY

The following describes the general procedure that the
START team follows. It represents a significant depar-
ture from the process by which many important deci-
sions about funding and technology selection have been
made until now.

Though expert decision-makers may be guided by
extensive experience and good judgment, they have
human limitations. Usually, a decision-maker will con-
sider only a few attributes when comparing competing
technologies. Our system’s usefulness, as much as any-
thing, is that it induces decision-makers to consider all
of the pertinent attributes, and provides a sound method
for using them in the decision-making process.

Even when a decision-maker is confident about a
selection based solely on his or her experience and
judgment, the START process can provide a valuable,
objective foundation to support that decision.

Please note, however, that not all studies begin at
Step 1 and continue through to Step 8. A sponsor may
have determined the answers to early-stage questions
before initiating a study. Or a study may focus on, for
example, identifying and evaluating possible system
architectures for a given mission (Step 3).

In some cases, we may be called upon to assess the
usefulness of a particular technology that was funded
as basic research. To take a hypothetical example, the
developer of a particular nanotechnology might want to
know how it could be put to use in NASA’s various
programs. In such a case, we would employ a “bottom-
up” approach, beginning at Step 5 and working upward
to Step 2.

Frequently, we are called upon to split the difference:
working top-down until we have derived the capability
requirements for a particular mission, then switching to
bottom-up to identify the capabilities of a particular set
of technologies that were funded as basic research. The
case study, “Rover Autonomy #2.,” described below, is
a good example of this approach. The action lies in
matching capabilities with capability requirements.

2.1. Develop a Clear, Complete Statement
of the Problem To Be Studied

State the problem unambiguously, specifying what is to
be maximized or minimized, with all pertinent policy,
schedule, and budget constraints. Probe to uncover any
unstated assumptions that need to be taken into account.
Unarticulated assumptions can undermine a study.

In a study of competing technologies, for example,
the decision-maker can specify options about top-level
policy. One policy could be to fund only as many
technologies as can be brought to completion. Another
policy might prefer to fund all of the competing tech-
nologies at some level. There can also be a weighted
combination of multiple objectives such as an appropri-
ate weighting of the two specific policies presented
above. This preference about policy can guide the sub-
sequent technology selection analysis, by providing a
framework within which the analysis is conducted.

Most often, we are asked to address the problem of
maximizing science return subject to a given resource.
However, our studies are capable of pursuing any num-
ber of other objectives, such as minimizing cost for
variable range in performance, maximizing continuity
of tasks, maximizing public interest, etc.

2.2, Identify Top-Level Goal

Identify top-level goals and quantify what would con-
stitute satisfying those goals. For example, a mission to
detect possible life 1 km below the Martian surface
would be one way to meet NASA’s goal of searching
for life on other worlds. For NASA work, we draw
goals, investigations, and experiments from NASA stra-
tegic plans and science working group meeting reports.



TOWARD A SYSTEMATIC APPROACH FOR SELECTION OF NASA TECHNOLOGY PORTFOLIOS 287

2.3. Develop or Select One or More
Architectures for Accomplishing the Goal

Design or select architectures, including precise scenar-
ios, for conducting specific subsets of the desired ex-
periments. A study may address mission architectures,
system architectures, or both. For example, for the goal
described above, a mission architecture might include
launching a spacecraft, landing it safely in a certain
location on Mars, having a rover disembark and travel
to where scientists suspect a pool of underground water,
drilling to a depth of 1 km, retrieving a sample, analyz-
ing the sample for signs of life, and reporting the results
to Earth. A system architecture may be limited to the
design and functions of the rover.

The START team can also help sponsors identify the
time horizon they wish to target for development of
their technologies. For example, estimated mission sci-
ence return can be based on projected Code S and Code
Y missions as depicted in their respective roadmaps
from 2009 through 2025.

2.4. Identify the Capabilities Needed for
the Architecture

Decompose the mission or system concepts into spe-
cific quantitative capability requirements whose impor-
tance is based on their estimated contribution to the
objective stated in Step 1 (such as maximizing science
return). Our models are capable of capturing interde-
pendencies between capabilities. For example, a Mars
rover’s sample acquisition capability depends on coor-
dination of its sensing and manipulation capabilities.

It should be noted that it is common within NASA
to have science working groups prioritize mission goals
and measurements to achieve those goals, and these
prioritizations should be reflected in the objective func-
tions. However, no claim is made that all scientists agree
with these lists; science return continues to be largely
defined in subjective terms, and these lists are updated
frequently as new information becomes available and
the scientific focus of a mission changes. More gener-
ally, the objective function can incorporate other con-
cerns of the decision-maker, such as overall cost, human
risk, mission longevity, etc. Selection of the terms of the
objective function and the associated utilities or weights
is the responsibility of the decision-maker, since they
have to reflect his preferences.

2.5. Identify Technologies That Could
Provide the Needed Capabilities

Assess technology candidates that purport to fulfill or
partially fulfill the required capabilities. Capture uncer-
tainties in their capabilities, using performance attrib-

utes and their probability distributions. Define each
technology development task by at least four critical
metrics:

a. Performance requirement attributes
b. Budget estimate

c. Scheduled delivery date

d. Risk level

2.6. Evaluate and Rank the Technology
Candidates To Identify Which To Use or
Fund for Development

Rank technologies by calculating their contributions to
all relevant capabilities and missions. Generate uniform
unitless values to compare attributes with dissimilar
metrics (for example, mass in kg, volume in cm?, cost
in dollars, etc.).

Risk may be calculated and considered, both in
terms of an individual technology’s risk of failure (use-
ful in comparison with competing technologies), and in
terms of the impact a technology’s failure would have
on the entire mission. The risk is not only due to a given
technology’s failure, but it is also due to the technol-
ogy’s possible inability to satisfy all the desired goals.

Construct optimal portfolios (sets of technologies
for the desired purpose) for the objective stated in Step
1 (such as maximizing the total science return within
allowable cost limits and other programmatic con-
straints).

2.7. Validate Results

Though it is impossible to compare a study’s outcome
with “truth,” we consider our results validated if they
are consistent with all known information (experi-
ments, models, expert opinion, uncertainties). If not, we
reexamine the inputs and model assumptions that led to
the study’s result.

2.8. Track and Reconstitute the
Technology Portfolio as Needed

Maintain an optimal portfolio as technologies mature
and customer requirements change.

3. VALIDATION

Validation is the process of comparing a model’s output
with a real system or, lacking one, with an expert’s
judgment. If the result is consistent with all known
information and the expert’s opinion, we consider it
validated. A positive validation confirms that the
model’s output represents the most reasonable result,
within the limits of uncertainty.
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If a result is invalidated, we examine the model’s
assumptions, revisit the inputs to see whether they were
estimated accurately, and/or adjust for any new con-
straints that were not previously expressed.

It is important to note that some degree of uncer-
tainty surrounds every input, and some inputs, such as
the relative importance of a particular attribute, can only
be assessed by experts, and are likely to have relatively
high variability. For technologies that do not yet exist,
virtually all inputs may have to be estimated amid
considerable uncertainty.

If the experts involved in a study’s validation process
reaffirm the values for each attribute, the decision-
maker may reconsider a conflicting opinion and bring
it into accord with the study’s results. Alternatively, the
experts and decision-maker may revise some of the
input values, leading to a different outcome.

One of the inevitable limitations in attempting to
validate our methodology is that the actual outcome of
decisions about portfolio selection is difficult if not
impossible to quantify. System engineers typically de-
fine validation to mean that the thing that is validated is
tested, and the test results are compared with the re-
quirements the thing is intended to satisfy. The intent of
such validation is to compare and test predictions with
what actually occurs. Although desirable, it is not fea-
sible to validate a portfolio based on what is observed
in the future. Specific component results can be ob-
served to validate pieces of data. However, it is simply
not feasible to compare predictions with actual data,
until a process such as the one we describe has been
utilized in an operational setting long enough to allow
sufficient data about impact of portfolio selection deci-
sions to be gathered.

3.1. Sensitivity and Uncertainty

We can calculate which attributes (such as mass, vol-
ume, cost, or an aspect of performance) were most
influential in producing the study’s outcome, versus
some other particular outcome. In practice, this is most
useful when a study’s outcome differs from the outcome
preferred or expected by a decision-maker.

If a small change in the value assigned a particular
attribute would produce a large difference in the result,
that attribute is said to have high sensitivity. Conversely,
low sensitivity indicates that even a big change in the
value assigned a given attribute would have little impact
on the study’s results.

Relative uncertainty in a result is deduced from the
product of sensitivity and uncertainty in the data that
led to the result. If an attribute’s uncertainty is much
higher than that of the other attributes, it may be worth-
while to try to reduce that level of uncertainty. If all

attributes have about the same level of uncertainty, we
focus on sensitivity.

We can use sensitivity information in two ways.
First, with the dominant influences on the study’s out-
put brought to light, a decision-maker can decide
whether these particular influences make sense. If, for
example, the cost of testing has high sensitivity in a
study of competing technologies, but the decision-
maker does not think that the cost of testing should be
much of a determining factor, that is a signal that we
need to reconsider the factors that produced such a high
sensitivity for that attribute.

Sensitivity results allow us to calibrate the model by
identifying attributes to target for reevaluation of the
input values. Minor revisions to a few highly sensitive
attributes values may make the results more accurate.
Once the model is calibrated, the decision-maker can
be confident of the results, even ones which contradict
prior intuition.

The goal of this process, however, is not simply to
make the study agree with an expert’s preconceived
ideas. It is to examine the underlying reasons for the
difference in outcomes, and to determine whether any
of the initial values should be changed on their own
merits.

This procedure exposes the implications and ramifi-
cations of any given result, whether it is the study’s
initial output or the expert’s preference. Result “A”
means that all the values, preferences, and weightings
that led to “A” are the best choices. Result “B” means
that all the parameters that led to an output of “B” are
the best choices. Going through this process leads a
decision maker to examine those values, preferences,
and weightings, and to make sure that they are as
accurate as they can be.

In doing so, we build a solid foundation for whatever
result the study ultimately produces. If, after this reex-
amination process, the study confirms the decision-
maker’s original preference, it provides a
comprehensive explanation for why that is the best
prediction that can be made. On the other hand, if it
leads to a change of mind, the decision-maker will know
exactly why such a change was warranted.

4. CASE STUDIES

Following is a group of case studies that involve tech-
nology tasks applied to exploration of the surface of
Mars. The techniques employed, however, are applica-
ble to a wide variety of mission types inside and outside
of NASA.

The common thread in these studies is the develop-
ment of models that enable us to calculate the impact
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technologies would have on the science return of their
missions. This enables us to assign values to the pro-
jected return-on-investment for each technology, a very
useful tool in ranking the technologies for funding and
development.

Our studies therefore are intended for sponsors who
are interested in examining the various technological
options that may be available at an early stage for broad
classes of missions. In response to this, we focused on
identifying individual technologies, and groupings of
technologies, whose integration has not occurred as yet,
but that could occur at a later stage in a mission design
and implementation process. While focusing on the
identification of advanced technology options for a
range of missions, we recognize that other risks besides
technology development risk may drive the design
process in later stages of a mission design evolution,
including systems integration, testing, and even ulti-
mately in risk inherent in mission operations. These
integrated system risks, and not only technological risk,
have been the primary sources of recent failures in
operational flight systems ranging shuttle, to space
telescopes, and planetary surface exploration vehicles.
Case studies that cover this broader set of risks, includ-
ing those associated with technologies that need in-
flight validation are discussed in [Neff et al., 2004].

4.1. Autonomy for Mars Rovers

Whenever current rover systems experience a failure,
they stop, wait for the next scheduled opportunity to
communicate its problem to Earth (relatively brief pe-
riods each day, due to limitations of the rover’s solar
batteries), and wait for new commands attempting to
resolve the problem. After each command, the Earth-
bound controllers await Pathfinder’s progress report
before issuing a follow-up command.

Technology that would increase a rover’s auton-
omy—that is, improve its ability to conduct science
while reducing its need to phone home for help—would
save a great deal of time and therefore enable the rover
to accomplish much more.

Following are two case studies [Elfes et al., 2003;
Lincoln et al., 2003] that represent efforts to determine
the relative benefits of investing in various software
technologies that purport to help Mars rovers do science
more efficiently, avoid most failures, and diagnose and
correct their own problems when failures occur.

The first study (Rover Autonomy #1) focuses on
technologies that were proposed specifically to reduce
fault rates observed during extensive field-testing in
Mars-like terrain here on Earth.

The second study (Rover Autonomy #2) analyzes
technologies that were funded as basic research, only

loosely coupled to a mission. Hence, we needed to
determine technology-derived capabilities and match
those capabilities with mission requirements. These
technologies are more advanced than those studied in
Rover Autonomy #1, capable of automating entire se-
quential operations.

4.2. Case Study 1: Rover Autonomy #1

We conducted this study [Elfes et al., 2003] to deter-
mine the relative benefits of developing various auton-
omy software technologies for a surface rover in the
proposed Mars Science Laboratory (MSL) mission
scheduled for 2009. Since the rover prototypes had been
extensively field-tested in Mars-like terrain on Earth,
we had access to an extensive body of real-world infor-
mation.

We decomposed the mission into functional steps
(acquire panorama, develop range map, plan path, etc.)
covering long-range traverse, short-range approach to
target, and sample acquisition and handling. For each
of these steps in each mission element, we noted the
kinds and frequencies of failure, and the time that was
lost while the controllers developed a strategy to miti-
gate the failure.

For each of the science operations (moving samples
to the rover’s onboard analytic lab, conducting contact
experiments, moving to a new site, etc.), we developed
a utility function that corresponds to the effectiveness
in contributing to the mission goals [Lincoln et al.,
2003]. The utility function was endorsed by a science
group, and reflects the preferences of the decision-mak-
ers. For example, the first sample collected in a bag may
be worth 40% of the total mission value. In general,
intrusive experiments, such as grinding up a rock sam-
ple and analyzing it with a mass spectrometer, merited
the highest values.

Technology development cost data was provided by
the technology developers and underwent independent
review [Lincoln et al., 2003].

We calculated the abilities of the autonomy software
technologies under study to mitigate potential failures,
as well as the difficulty in developing responses to each
of them. Subsequent work transformed the difficulty
estimation into dollars. Since the cost of each technol-
ogy cannot be predicted with certainty, we established
uncertainty estimates in return-on-investment with re-
gard to performance and, through modeling, to science
return.

Each autonomy software technology was judged by
two attributes: ability to save time (measured in Martian
days, or “sols”), and cost. The relative contributions of
the autonomy technologies appear in Figure 1.
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Figure 1. Relative contribution of autonomy technologies. The lower left chart shows our prediction of the relative utility of
autonomy software for each technology, while the chart at lower right shows the projected difficulty in developing it (which relates
to cost). Dividing utility by difficulty (or benefit by cost) yields the return-on-investment data illustrated in the top chart.

4.3. Case Study 2: Rover Autonomy #2

This pilot study analyzed two potential missions to
Mars, one to an equatorial region and a subsequent one
to a north polar region. These two mission concepts are
consistent with current advanced Mars mission plans
over the next two decades.

The study’s objective was to develop and demon-
strate a system for evaluating and comparing groups of
advanced autonomy software technologies, most of
which are currently at the R&D stage (TRL 2 or 3), in
terms of the impact they would have on science return
in each of the two missions.

We began with a top-down methodology in which
we derived, from top-level mission goals, the technol-
ogy capabilities that would be required to operate at the
two disparate sites and produce the desired science.
Then we went bottom-up, taking a group of technolo-
gies, determining their capabilities, and evaluating the
potential impact that enhanced autonomy would enable
them to make.

4.3.1. Deriving Capability Requirements

Following the top-down methodology, we decomposed
the mission goals into their constituent functional re-
quirements. For example, the science requirements call
for such capabilities as mobility, instrument placement,

sample acquisition, and telecommunications. Mobility,
to take one of these capabilities, entails range-mapping
to estimate distance to nearby objects and possible
hazards, path planning, and obstacle avoidance. Obsta-
cle avoidance, in turn, breaks down into obstacle detec-
tion and navigation. Using this system, we ultimately
arrived at a comprehensive list of functional require-
ments that could benefit from enhanced autonomy pro-
vided by the technologies under consideration.

4.3.2. Autonomy Technologies Selected for
Evaluation

Turning to the “bottom-up” portion of our methodol-
ogy, we selected 15 technology groups as repre-
sentatives of the diverse technological interests, and of
the seven technology areas that enable surface opera-
tions (see Table I).

The task before us was to match their capabilities
with the capability requirements derived from the mis-
sion goals, and to determine the extent to which each of
these technology groups would produce greater science
results if it had enhanced autonomy.

4.3.3. Calculating Impact on Science Return
Through interviews with experts, we developed per-
formance parameters for each of the technology groups,
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Table I. CICT Technology Group

P— —

Area | - Twm €
tand2 | Onboard Fault dentifcatin for Planetary Rovers
1and 2 - System-Level Verification Technology
1and 2 Autonomy Infusion Simulation Environment
3 . Distributed Control Testbed for Autonomy
3 Rover Autonomy Architecture
4 l Single-Cycle Instrument Placement
4 v Rover-Based Manipulation
5 . Multimedia Human Computer Interfaces
5 ‘ Human-Centered Computing for MER
6 . Onboard Science Analysis
7 MER Rover Sequence Generation
7 ' Contingency Planning for Coﬁcurrent Activities 7
7 ‘ Accelerated Long;Range Traverse V
7 . System for Mobility and Access to Rough Terrain
7 . Super-Resolved 3-D Surface Models from Rover Images

Key to Areas:

Fault Management
Validation/Verification
Software Architecture

Human-Computer Interaction
Sample Handling
Mobility

No o soDb

and determined which elements of the mission the
technology would help.

For example, we determined the impact that “System
for Mobility and Access to Rough Terrain” would have
on the rover’s traverse rate. Then we plugged that
information into the Mission Model (see Fig. 2) to
calculate its impact on the number of sols (Martian
days) that this technology would save over the current
state-of-the-art, as a percentage of the total mission
duration.

Saving sols means enabling the rover to spend time
doing science instead of—in this case—traveling. So
saved sols are presumed to correlate to an increase in
science value. We used the number of saved sols in the
ROI Model (see Fig. 3) to determine each technology’s

Approach/Instrument Placement

return on investment, and the resulting numbers were
used to rank the technologies.

Table II shows the results of the initial prioritization.
The task names have been replaced by the letters A—O
because the data is still preliminary and under review.
We provide the results table, with the data and support-
ing models, to all parties involved to begin a dialogue
on the perceived impact and rationale.

ROI represents increase in science value (as meas-
ured by the number of sols saved over state-of-the-art,
or “SOA”) divided by cost. When calculating the com-
bined ROI for each technology task, we gave the MSL
value twice as much weight as the polar value. This
weighting is somewhat arbitrary and could be changed
if desired. But it was intended to reflect the fact that
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: raverse . -
Sites /Between Sites Distance between sites
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| Saved
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Number of sites +
Sols to traverse between sites *
(Number of sites — 1)

Q Chance node representing an uncertain value
C] Variable node representing a relationship or constraint

C> Result node representing output of module

Figure 2. Mission Model. This template illustrates the procedure for calculating how many sols each technology would save, as
a percentage of the total mission. Each technology would impact (and presumably improve) one or more of the bubbles that lead
to determining a number of “sols.” “Nominal sols” refers to the number of sols that would be spent using state-of-the-art technology
as represented by the MER rovers. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]

these technologies are more likely to be used in the
more imminent MSL mission, and to be precursors to
the technologies that will enable and enhance the polar
mission. Though these technologies are innovative, far
exceed SOA for the most part, and are intended for

Failure Failure

SN

Increase in Enainaarin
Science gin 9
Risk
Value

N

Consequence Likelihood of
of Engineering Engineering

long-term impact, they will have as much as a decade
for further improvement between the two missions.
Note also that these ROI numbers are not intended
to represent final, definitive evaluations, but rather a
solid basis for further investigation and discussion.

Engineering risk due to technology use =
Consequence of engineering failure *
Likelihood of engineering failure

= Consequence of engineering failure
during mission is estimated in units of
lost science value

Expected
Increase in Cost
S

cience Value

Probability of
Development ROI
Success

ROI = Probability of development
success * (Increase in Science value -
Engineering risk)/Cost

= Units of ROl are: increase in science
value/$

® Increase in science value is estimated by percent sols saved when

using technology.

= Assume mission will use the extra sols engaged in additional
activities based on their relative utility.

Figure 3. Return on Investment (ROI) model. This template illustrates the procedure for determining ROI for each technology
group. “Increase in science value” uses the “percent sols saved” number Calculated in the Mission Model.
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Table II. Initial Results

Technelogy 1 4 8

Technology 2 7 9 8
Technology 3 15 17 15
Technology 4 14 17 15
Technology 5 10 11 10
Technology 6 13 10 12
Technology 7 3 32 31
Technology 8 3 3 3
Technology 9 4 8 5
Technology 10 4 0 3
Technology 11 23 46 31
Technology 12 7 15 10
Technology 13 14 14 14
Technology 14 5 23 11
Technology 15 2 2 2
Combined ROI used illustrative weighting with relative ratio 2:1 for MSL
and Polar missions.

They indicate the potential performance of each tech-
nology under certain conditions and for specific pur-
poses. A given technology might benefit additional
operations that, if factored into the study, would im-
prove the technology’s ROI. Similarly, we could am-
plify the study by factoring in additional metrics—such

as development and operations cost, heritage value,
innovation, and public inspiration—and potentially ar-
rive at different results.

However, the study does demonstrate that it is pos-
sible to estimate mission-level science return impacts
of diverse autonomy technologies, that the results can
be very useful in assisting decision-makers in the selec-
tion of technology groups for funding and development,
and that these methods are applicable to a wider class
of technologies and mission classes.

4.4. Case Study 3: Predicting the Cost of
New Technologies

Investigators seeking technology development funding
typically cast the best light on their estimates of how
much time and money they will require. Add to this trait
the fact that technologists and mission designers often
have conflicting, unexpressed assumptions about what
is required, and you have the makings of costly misun-
derstandings and cost overruns.

This case study concept [Smith, Wertz, and Weisbin,
2003b] was aimed at developing a process to generate
plausible cost estimates grounded on clear assumptions.

We developed a process (see Fig. 4) for estimating
the cost of new technology that included uncertainty
and an independent peer review of the estimate. It is
based on interviews with technology representatives
that focus on cost and performance relationships for
each technology:

Phase 1
Estimate
Assess Technology Technology
Performance > Development
Requirement(s) Costs for Pre-
l Mission (TRL 6)
Identify Phase2 v Release
Technf)logy Estimate Testing <Y . Cost
Portfolio a{ld Costs (TRL 6) '\—/ Estimate
Representatives i
y
Phase 3 Y
Estimate Mission .
| > Technology Thuéi(;;arty
Application Estimate
Costs :
(TRL 6.9) Review

Figure 4. Process to estimate R&D costs. This particular task subset dealt only with technologies up to TR 6, and so did not

include the action described in the lower middle box.
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1. What are the important relationships that influ-
ence the cost?

2. What are the development issues?

3. What happens to performance if the cost is higher
or lower?

4. What happens to cost if performance is higher or
lower?

5. What assumptions underlie the cost estimate?

6. What is the probability of successfully develop-
ing the technology?

As a test case, we applied the process to a set of
autonomy software technologies for Mars rovers that
were the focus of the “Rover Autonomy #1” study.

The interviews in this case revealed important and
subtle factors such as technology interdependencies,
resource dependencies, and areas of common problems
for the technologies studied. The third-party review was
critical in helping to (1) validate the original prediction,
(2) identify missing or redundant cost issues affecting
the initial prediction, and (3) determine any adjustments
that might need to be made to the original cost estimate.

Figure 5 illustrates the likelihood of success of three
of the tasks as a function of Available Resources. While
the task was to model the relationships between per-
formance, cost, and schedule for autonomy software,
the general approach should be extensible to other
technologies, including hardware systems.

An optimal $50 million portfolio does not necessar-
ily simply add new technologies to those of a $40
million portfolio. Expanding the budget may make an

Probability Target
Handoff

Camera

0.8 - Models

0.6 }-

Short Range
041 Path Planning
0.2 {-

f f l f —Cost (SK)
500 1000 1500 2000 2500

Figure 5. Likelihood of R&D success as a function of avail-
able resources. The graph to the left shows the probability of
completing three tasks to their specified level of performance,
at a range of budgets. For example, the probability of com-
pleting target handoff rises from about 0.3 at roughly $1.1
million to about 0.95 at a cost of about $1.75 million. The
green shading around each budget point indicates the amount
of uncertainty in the figure.

entirely different set of technologies possible and pref-
erable.

By more reliably predicting the costs of component
technologies and considering the inter-relationships of
their science return, we can help decision-makers to
determine the best place to set the cutoff points for their
technology budgets. Together, Figures 5 and 6 can help
a decision maker to optimize a portfolio.

Suppose he or she has about $2 million to spend on
autonomy software technology. Considering the three
technologies represented on these graphs, the decision-
maker can fund one of three possible portfolios:

1. Camera models and target handoff. But there will
only be enough money to fund target handoff to
the point where the top graph indicates less than
a 0.4 probability of being completed.

2. Target handoff alone, but to the level where the
top graph indicates near certainty that it will be
completed.

3. Short range path planning, but only to the level
where it has around a 0.5 probability of being
completed.

Figure 6 tells us that Portfolio #1 will save about 15
sols for the camera models plus about 10 sols for the
target handoff, for a total of 25 sols saved. Portfolio #2
would save about 35 sols. Portfolio #3 would save about
11 sols.

All other things being equal, the best return-on-in-
vestment would come from portfolio #2, which would
save 35 sols with a near-certainty of completion.

Sols Saved Target
40 +- Handoff
35+ =
30
= Path Planning
20 Camera 4
10 k- -
54

f t } f }—Cost ($K)
500 1000 1500 2000 2500

Figure 6. Effective science return as a function of R&D
investment. This graph to the right indicates the performance
level (measured in the number of Martian days, or sols, that
would be saved) one would expect at the budget levels plotted
in the previous graph. For the target handoff, the number of
sols saved increases from about 10 at roughly $1.1 million to
about 35 at about $1.75 million. The data for both graphs were
derived from interviews with experts.
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4.5. Case Study 4: Optimizing Technology
Portfolios for Mars Missions

This study [Smith, Dolgin, and Weisbin, 2003] illus-
trates a more extensive approach to developing optimal
technology portfolios for specific budgets. Mars pro-
gram goals include discovering whether life ever arose
there, determining the planet’s climate history and the
evolution of its surface and interior, and preparing for
human missions. We began our study by developing
concepts for missions to accomplish these goals during
the timeframe of 2009-2020. They are summarized in
Table III.

Next, we developed quantitative capability require-
ments to enable the potential missions, and identified
the technology development efforts required to enable
those capabilities, taking note of their funding levels,
probabilities of success, and the alternate technologies
available for use if the new technology cannot be suc-
cessfully developed. Technology costs and mission
costs were included to screen infeasible mission sets
and technology portfolios from the solution.

We picked three levels of technology investment for
a 12-year period—$25 million per year, $50 million per
year, and $75 million per year—and used an optimiza-
tion program to determine which sets of technology
would yield the best science return at each funding
level. The results appear in the Table IV.

At the $25M/yr technology budget, only 24 out of
the 511 portfolios met the budget constraints. One
lander/rover and one orbiter had the lowest technology
costs that fit within the budget profile. The striking
result was that although the emphasis was on landed
missions, only one landed mission option was feasible.

At the $50M/yr technology budget, the number of
affordable technology portfolios increased to 288 out
of 511 possibilities and it allowed 15 additional tech-
nologies to enter the solution that enabled two addi-
tional missions. From these results it was clear that the
$50M/yr budget had opened the tradeoff space between
technologies and enabled a variety of missions (in situ,
sample return, and global orbiters).

All 511 technology portfolios fit within the technol-
ogy budget constraint at the $75M/yr level, enabling
one additional mission. The mission budget constraint
coupled with the higher costs and risks due to depend-
encies on the Mars Science Laboratory prevented the
Polar rover and Wildcat missions from entering the
optimal solution. It was also found that if the strategy
were revised to emphasize landed missions rather than
sample return, then landed missions push the sample
return mission out of the solution.

The total technology investment costs and mission
costs for each of the technology budget levels clearly
showed the sensitivity of the optimizing mission set on
technology investment.

Technology Budget $25M/yr $50M/yr $75M/yr
Technology Cost $73M  $214M  $238M
Mission (Program) Cost $1430M $3580M $4070M
Number of Missions Possible 2 4 5

4.6. Case Study 5: Lander vs. Rover

This case study [Elfes et al., 2003] compares the impact
of investments in precision landing and long-range
roving technologies on a hypothetical mission to Mars.
We show how to develop an optimal investment strategy

Table III. Candidate Missions for the Mars Program

Mars Science Laboratory

Mission to measure science measurement in-situ with a rover

Volcanology Rover

Rover mission to characterize volcanic region with in-situ sampling

Synthetic Aperture Radar Orbiter

Orbiter sounding for surface science experiments and mapping

Imaging/Atmospheric Sounding
Orbiter sounding)

Next generation remote sensing orbiter (imaging and atmospheric

G. Marconi Orbiter

Telecommunications orbiter relay for high data rate communications

Telesat Orbiter Small Mars telecommunications orbiter for high data rate
communications
MSR Sample Lander Sample return with a Mars ascent vehicle

Wildcat Lander

Lander with 30mm depth drilling system
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Table IV. Technology Resources, Associated R&D, and Mars Missions Enabled

$25M Per + Sample characterization

Year + Rover mobility at 160-200 m

+ Orbit science resolution

» Telcom network, Mars-to-Earth

+ Volcanology Rover
+ Imaging/Atmospheric Sounding orbiter

Mission Set Cost = $1430M
Technology Portfolio Cost = $73M

$50M Per * Precision landing
Year + Impact attenuation
* Hazard avoidance
+ Forward planetary protection time

of organisms

- Back planetary protection

- Mars orbit rendezvous

~ Mars ascent vehicle
+ Sample characterization
* Mobility at 230-450 m
« Sample handling, contamination
»  Multi-mission survivability
« Approach/Instrument placement
+ Mobility at 160-200 m
+  On-orbit science resolution
+ Telecon network, Mars-to-Earth

- Forward planetary protection, number

+ Mars Science Laboratory

+ Volcanology Rover

+ Imaging/Atmospheric Sounding orbiter
+ Mars Sample Retun

Mission Set Cost = $3580M
Technology Portfolio Cost = $214M

$75M Per
Year orbit science, wavelength.

All technologies for $50M case plus on-

+ Mars Science Laboratory

+ Volcanology Rover

+ Synthetic Aperture Radar orbiter

+ Imaging/Atmospheric Sounding orbiter
+ Mars Sample Retum

Mission Set Cost = $4070M
Technology Portfolio Cost = $238M

that minimizes mission risk, given a fixed total technol-
ogy investment budget. More details about this study
are contained in Smith, Wertz, and Weisbin [2003a].

The baseline mission scenario for this study is a
Mars 2009-class mission with precision landing capa-
bility and a long-range rover. There are three prese-
lected science sites, including the target-landing site,
with a total traversal distance of 6 km. Total mission
time is 90 sols (Martian days), with 50 sols allocated to
traversal.

The results are shown below in Figure 7, which
illustrates a tradeoff between investment in landing and
investment in roving technology development. In this
graph, investment in lander technology is shown on the
horizontal axis, and investment in rover technology is
shown on the vertical axis. The dollar amounts on the
two axes are connected by diagonal “isobudget” lines.
Every point along the straight line that connects $40M

on the lander axis with $40M on the rover axis, for
example, indicates a combined investment of $40M.

The curved lines represent levels of risk of mission
failure. The top curved line, for instance, represents a
10% chance that the mission will fail (or, to put it more
optimistically, a 90% probability of success).

The uppermost “risk” curve that is intersected by any
given “budget” line indicates the lowest risk level that
budget can buy. The point of intersection reveals what
combination of investments in lander and rover technol-
ogy will achieve that lowest possible risk.

For example, if you have $40M to spend, you look
along the $40M diagonal line until you see where it
intersects the highest risk curve. $40M does not inter-
sect the very top curve, which indicates a 10% risk of
failure, but it does intersect the 20% curve. So the least
amount of risk you can have for a $40M budget is 20%.
And by seeing where that intersection point falls on the
two axes, you can determine how that $40M budget
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Figure 7. Landing-roving trade space of risk, cost, and performance.

should be divided between lander and rover technology.
In this case, you would spend about $13M on lander
technology and about $27M on rover technology to
achieve the lowest possible risk for that budget: 20%.
If risk level is more important to you than dollar
amount, you can use this graph to see how much you
have to spend—and where you should spend it—to
achieve that level of risk. For example, if nothing
greater than a 10% risk (that is, nothing less than a 90%
probability of success) is acceptable, you can see that
the least amount you can budget is about $44M, of
which about $26M should be spent on rover technology,
and about $18M should be spent on lander technology.

100 50 00 10 20 30

Another method of visualizing the results from this
study is shown in Figure 8. On this graph, total budget
levels vary vertically. The minimum mission risk
achievable at each budget level is shown on the left,
while the corresponding technology portfolio appears
on the right.

5. RELATIONSHIP TO OTHER WORK

Risk assessment, tracking, and mitigation are themes of
core importance not only for the development of space
missions, but for other areas as varied as large-scale
engineering projects, urban planning, health manage-

I Risk

Technology Investment Budget (M$)

100 50 00 10 20 30
Risk (%)

40 50

Technology Investment Allocation (M$)

Figure 8. Investment strategies and associated levels.
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ment, economic decisions, or military planning. Con-
sequently, risk assessment and mitigation technologies
have been developed and applied extensively in the
engineering disciplines [Haimes, Kaplan, and Lambert,
2001; Haimes, 1998], flight planning [FAA System
Handbook, 2000], economics, medicine, governmental
planning, military decision-making [Dombroski et al.,
2002: 19; McNichols and Owens, 1995; Steves, 1995;
Risk Management Concepts & Guidance, 1989; Intel-
ligence Community R&D Database; Braunstein and
Salsamendi, 1994], etc.

While some of the methodologies developed in other
areas have been incorporated and applied by NASA,
space mission planning, development, launch, and op-
erations present unique challenges for risk assessment
and management. These include:

e Mostdeep space exploration missions are one-of-
a-kind, and even “twin” missions such as the
MER rovers are faced with significantly different
challenges in their respective landing sites. Con-
sequently, the knowledge and experience gained
with one mission can only be partially transferred
and applied to a new mission.

e Complete system validation is only partially pos-
sible before launch and deployment, since deep-
space temperature, pressure, acceleration, and
radiation conditions cannot in general be fully
simulated on Earth.

e Mission lifecycles, going from initial mission
concepts to detailed analysis, mission architec-
ture selection, technology development, system
integration and testing, and spacecraft deploy-
ment and operation, require extensive periods of
time. This, as well as the large investments re-
quired for any space mission, precludes the abil-
ity of doing extensive and statistically
meaningful system validation through actual re-
peated deployments.

¢ Finally, uncertainties in mission scenarios, sched-
ule and budget delays, long lead times required
for mission planning, development and deploy-
ment, and mission requirements that often tax
technologies to their limit, all contribute very
high levels of uncertainty to the whole risk assess-
ment and management process.

While the paper focuses on a set of applications to
specific case studies, there are certain features in the
underlying methodology in portfolio selection devel-
oped over the last several years, and these features allow
us to cast the contributions of this paper within the
context of the work of others in similar areas of re-
search. Our methodology for Mars portfolio optimiza-
tion [Smith, Wertz, and Weisbin, 2003a] uses a Monte

Carlo simulation method adapted for conditional de-
pendencies to model uncertainty, together with a mathe-
matical programming search algorithm to do
constrained optimization over technology portfolios
embedded within mission portfolios. This methodology
expands the work of others [Faulkner, 1996; Hertzfeld
and Vonortas, 1996; Hertzfeld, 1992; Granot and Zuck-
erman, 1991: 2; Smith and Feinberg, 1994: 218;
Czajkowsky and Jones, 1986: 17] that address the same
problem, but it offers the following unique features:

e Simulates uncertain development outcomes for
technologies with multiple descope options

e Allows dependencies between technologies (if
parent fails, dependent technology fails)

e Solves two-stage portfolio problem by (1) evalu-
ating technology portfolios to identify highest
value technology for enabling largest number of
projects and (2) simultaneously evaluates project
portfolios to identify set of projects with highest
expected return

e Enumerates all portfolio combinations in search
space.

To our knowledge ours may be the first application
of such methods to study the optimization of space
technology portfolios for Mars missions. Collecting the
performance database necessary to apply the advanced
methodology and obtain relevant quantitative results
constitutes one of the central contributions of this paper.

Similar remarks can be made about the case study
describing the trade between landing and roving tech-
nologies. This case study draws from the rich body of
work [Jensen, 2001; Knight, Glaessgen, and Sleight,
2002; Kotz, Lumelskii, and Pensky, 2003; Pearl, 1988]
in decision analysis, with specific emphasis on the use
of Bayesian networks and probabilistic reasoning. Our
main contribution here is in reducing to engineering
practice these generally powerful and broadly applica-
ble methods theoretical methods, using detailed com-
puter simulations [Jain et al., 2003] that accurately
predict the interaction of roving and landing vehicles
with the physical characteristics of the Mars terrain. It
is this combination of advanced methods in prob-
abilistic inference, with detailed physics-based models
to estimate the underlying probabilities, that represents
the main contribution of this case study. A more detailed
description of the technical foundations of this study
can be found in [Elfes et al., 2003].

6. SCALE-UP OF TECHNOLOGY
RESOURCE ALLOCATION PROCESS

We have illustrated in Table V an overall methodology
for systematic technology resource allocation, which
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Implementation

&

TOWARD A SYSTEMATIC APPROACH FOR SELECTION OF NASA TECHNOLOGY PORTFOLIOS

Objective Function of the Quantities to be maximized/ | Few Days
Stakeholder(s) minimized and associated

constraints
Science Value . Weighted set of science Two Weeks
(NASA Strategic Priorities) objectives and measurements
w(;:wompilation of Advanced Advanced mission concepts One month
Mission Concepts which might achieve some of
(Future mission concepts that the desired measurements_
may not have point design at  1-2 page top level summaries
this stage) of selected set of

representative mission

concepts
Mission Decomposition Hierarchical decomposition Six Months

from mission goals to
engineering capability

requirements

(Assume 40 mission
concepts drawn from existing
and current efforts, and
teams of 6 per concept)

Requirements Compilation &
Generation

Specification of capabilitym

| requirements, associated
| uncertainties, schedule, and

mission concept cost

Three Months

(Assume 40 mission
concepts and teams of 6 per
concept)

Capability Prioritization

Capabilities can be prioritized
at this Stage with
approximate costs and risks.

Two Months

Technology Characterization
and Forecasts

Projected performance, costs,
risks, schedule,
dependencies, and
uncertainties

Four Months

(Assume 600 technologists
spending two weeks each,
and review teams of 5
independent folks to validate)

Capability/Technology
Matching

(WHAT/HOW)

Technology composition up to
capabilities achieved and
matching to those desired

Three Months
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Portfolio Optimization
optimization

Multi-attribute combinatorial

Six Months

we believe can be scaled to the Enterprise and Agency
level. We have several suggestions that, if institutional-
ized within the NASA framework, can facilitate the
systematic technology resource allocation process.

1. This type of analysis must be supportive of the
decision-makers objective function; i.e., what to
maximize/minimize and what to set as con-
straints. Relative value between programs and
objectives needs to be understood; presently such
value is frequently established within a given
program through interactions of an Advisory
Committee with Program management. How-
ever, interprogram value considerations are cur-
rently dealt with at the agency level, often
implicitly rather than explicitly. Designation of
value and constraints doesn’t require a lot of
effort or time, but does represent a cultural

change (the information can be kept discrete if
necessary).

2. Advanced mission concepts and decomposition

of capability requirements (and associated uncer-
tainties) is currently done by each individual
project, but such information is not generally
available. Such information is essential to the
technology resource allocation process, and
should be contained within a NASA database that
includes advanced mission concept descriptions
and objectives.

3. NASA currently has a database (Technology In-

ventory) intended to characterize the status of
technology development. This database can be
the underpinnings of our analyses if it is aug-
mented with information from the technologist
as follows:
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a. The performance objective of each task needs
to be quantified with associated metrics and
uncertainty bounds.

b. The schedule and estimated cost to complete
along with associated uncertainty needs to be
provided.

c. Dependencies of one technology upon an-
other, where applicable, should be explicitly
noted.

e. A quantified estimate of the probability of task
success needs to be provided in order to un-
derstand the likelihood of achieving the pro-
posed output, assuming that the task is fully
funded; one would not generally expect this
to be unity since these are R&D tasks.

Much of this information currently exists, but it is
found only in the heads of specific individuals and as
such is not easily accessible for comprehensive analy-
sis. Systematically providing such information would
greatly facilitate the efficiency of the implementation
of the technology resource process for NASA described
herein.

This effort is now under review for application to
NASA-wide technology allocation decisions at organ-
izational levels responsible for agency-wide technology
development and financial management, as well as
strategic formulation of an integrated overall NASA
architecture vision.

It should be noted that the technology portfolio
assessments for the case studies discussed above have
concentrated on relevant technologies that are currently
being funded by various NASA sources. Although the
methodology presented here can directly incorporate
information about technologies being developed at
other governmental agencies, academia, and industry
(see, for example, the Intelligence Community Re-
search and Development Data Base [ICRD]), this was
not the focus of the customer decision-makers, who
were concerned about making optimal technology port-
folio choices within their funding programs.

7. CONCLUSIONS

We have proposed a flexible system that assists deci-
sion-makers in evaluating all pertinent attributes of
development candidates, including risk and uncer-
tainty, and identifying the main drivers of a result. The
system provides a sound foundation for the decision-
making process, based on the candidates’ predicted
contribution to science return or other goals. We have
shown that it is quite possible to estimate mission-level
science return impacts of diverse technologies, even

when those technologies were conceived primarily as
basic research.

We have demonstrated a system for making plausi-
ble predictions of the cost of new technologies, of
determining when diminishing returns make further
development inadvisable, and of optimizing technology
portfolios at various budget levels.

The case studies cited here illustrate our methodol-
ogy and the results it can produce. We have emphasized,
however, that a study’s outcome is generally not in-
tended to be a definitive conclusion, but rather a basis
for further investigation and discussion. Ultimately, the
process provides solid support for a decision-maker’s
judgment. The case studies provide a foundation from
which more extended applications to programs and
missions can be investigated. Such an investigation will
be quite challenging and interesting.

8. WEB SITE

The START web site offers many more case studies, and
describes how our methodology is applied to other areas
besides Mars. Please visit http://start1.jpl.nasa.gov.
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